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Abstract

This article estimates the heterogeneous returns to education by place-of-birth for
males born between 1930 and 1940. We form intervals of credibility from the pos-
terior distribution of our estimate. Instead of assuming the two-stage least squares
estimate is distributed normal, we simulate draws from the posterior distribution of
our two-stage estimate. When using weak priors, we obtain the same point estimates
as the standard IV-2SLS methods, but we have much larger 95% credible intervals.
When using the "best" priors as determined from cross-validation, we find that we
are 95% sure that the returns to education are positive for only four out of nine re-
gions, whereas the standard IV-2SLS approach would yield "significant" results for all
nine geographic regions.

Keywords: Machine Learning, Causality, Bayesian, Weak Instrumental Variables, hetero-
geneous returns to schooling, Angrist-Krueger data.
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1 Introduction

There is a long history of using instrumental variables to determine the causal effect of
schooling on education. Angrist and Krueger (1991) finds that each additional year of
schooling can boost earnings by about 8%. The discussion of methods for determining
our confidence in these point estimates has spurred a lot of literature. Current empirical
applications of instrumental variables face must first pass a binary test of whether the
instruments are "strong" enough for us to assume that the likelihood function is quadratic,
and therefore the estimate is distributed normal with variance as derived from the delta
method. This article is the first to estimate and make statements of confidence about the
heterogeneous returns to education by region of birth using the same 1980 Census data
used by Angrist and Krueger. We do not suffer from "weak instruments" by avoiding
using an asymptotic approximation (Leamer, 2010) of the instrumental variables two-
stage least squares (IV-2SLS) estimate.

Instead, we sample from the posterior distribution of our two-stage estimate and form
point estimates and measures of confidence directly from the samples. When using weak
priors, we obtain the same point estimates as the standard IV-2SLS methods, but we have
much larger 95% credible intervals. When using the "best" priors as determined from
cross-validation, we find that we are 95% sure that the returns to education are positive
for only four out of nine regions, whereas the standard IV-2SLS approach would yield
"significant" results for all nine geographic regions.

Bound et al. (1995) uses simulated (fake) instruments to obtain similar results of "sig-
nificance" to the results obtained by (Angrist and Krueger, 1991). In the case of IV-2SLS,
standard definitions of significance is defined by whether zero lies in a 95% confidence
interval formed by applying the delta method to the two-stage least squares estimate.
The delta method is an appeal to the large sample asymptotics of the IV-2SLS estimate.
However, we know that the just-identified IV-2SLS estimate does not have finite moments
(Nelson and Startz, 1990; Phillips, 2009) 1, and therefore the appeal to asymptotics in the
case of IV-2SLS analysis is diminished.

Chamberlain and Imbens (1996) explains that sampling from the posterior instead of
using an asymptotic approximation leads to tight posterior intervals when using the data,
and wide posterior intervals when using randomly simulated instruments. Lopes and
Polson (2014) and Hoogerheide et al. (2007) discuss a variety of priors to further analyze
the causal returns to education in the same setting. This article is the first to add the
analysis of heterogeneous treatment effects to the tradition of applying Bayesian credible

1The number of finite moments depends on the degree of over-identification.
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inference methods towards empirical data.
Due to the increased availability of big data and large scale AB tests in the tech indus-

try, readily available code packages (EconML, 2019) inspired by (Newey and Powell, 2003;
Hartford et al., 2017) have surfaced that advertise the ability to determine heterogeneous
treatment effects in a nonparametric manner. For the initial impact of the AB test on an
initial outcome, the method for discovering causal heterogeneous effects is quite straight-
forward. However, once we ask for the causal effect of the initial outcome on a secondary
outcome, we begin to confront the issue of weak instruments. Staiger and Stock (1994);
Stock and Yogo (2002) discuss conditions under which the instrument is "strong enough"
to assume the IV-2SLS estimate is normal.

Their approach requires the source of heterogeneity to be non-stochastic, or indepen-
dent from the omitted factors that determine the treatment. In the case of heterogeneous
returns to schooling by region-of-birth, this means that we require the region-of-birth to
be independent from the omitted variables that determine the years of schooling. In-
stead, we implement a strategy that avoids this pitfall at the cost of including estimating
additional first-stage equations.

Section 2 summarizes the data, Section 3 discusses the mathematical foundations and
the reason why we have many first-stage equations, Section 4 discusses the method of
sampling from the posterior, Section 5 summarizes our results, and Section 6 concludes.

2 Data

Following (Angrist and Krueger, 1991), we use the 5 percent Public Use sample (the A
Sample) of the US population as of April 1, 1980. Following Chamberlain and Imbens
(1996), we filtered down to native-born African American/Black or Caucasian/white
males with birthdays in the first or fourth quarter of a year between 1930 and 1939 (inclu-
sive). The key insight for our identification strategy is that men born in the fourth quarter
tend to have about one more year of schooling. Figure 1 shows the interquartile ranges of
the years of education against quarter-of-birth. For census participants born in the fourth
quarter, we see that the first quartile of the level of schooling is equal to the median. This
suggests there is a binding lower bound to the number of years of education for census
participants born in the fourth quarter.

I limit the sample to men with positive wage and salary earnings, and positive weeks
worked in 1979, leaving 202,859 participants in the sample. We compute weekly earn-
ings by dividing annual earnings by weeks worked. Table 1 shows that the average man
was 45 years old and earned $430 dollars per week in 1979. Eighty four percent of these
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men were married, and nine percent of these men were African American/Black. The
level of schooling is determined by the years of completed schooling, where twelve cor-
responds to completing high school. The original paper from 1991 conditioned on some
concomitant variables such as place of current residence, and marital status, however
conditioning on concomitant variables can corrupt the causal interpretation of the data,
so I remove these controls. For this article, we weight each census respondent equally,
and we leave extensions to weighted calculations for future research.

Since some of the states are much smaller than the others, we follow the original pa-
per in using census defined geographic regions as the source of potentially heterogeneous
treatment effects. Since the region of birth is determined chronologically before any ed-
ucational and employment decisions we can worry less about the issue of concomitant
variables. Figure 2 displays the census regions. Table 2 lists out the states that make up
each region.

Figure 3 shows the relationship between the average log weekly earnings against the
average years of education for each census region. We see a general positive trend, but
more importantly, we see that each region has differing average levels of weekly earn-
ings and education. This article checks if the returns to education differs across these
geographic regions.

The quarter-of-birth is our instrument. We follow the original paper in creating more
instruments by interacting the quarter of bith with the census regions and the years of
birth. Adding all these instruments would make us worry about adding "weak" instru-
ments, which would negatively affect inference in the IV-2SLS estimation approach be-
cause weak instruments make the IV-2SLS more biased and further away from being nor-
mally distributed. Due to this issue, we don’t assume that the final estimate is distributed
normally. Instead we sample from the posterior of the our instrumental variables esti-
mate.

3 Model

We would like to estimate the heterogeneous impact of schooling on log weekly earnings.
The heterogeneity is with respect to the region of birth 2. Throughout this paper, data for
each individual, i, is in row form, and N in the subscript denotes vertically stacked data

2For region definitions, see Figure 3. We leave the extension to random treatment effects for future
research.
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for all the participants.

Yi = SiβS + SiGiβSG +GiβG + XiβX + βc + εi (1)

Yi is log weekly earnings, Si is years of schooling, Gi
1×(KG−1)

is a vector of indicators

for each region of birth, excluding one to prevent over-saturation. We have a KG = 9
geographic regions. The controls Xi include race and indicators for each age between
1930 and 1940. We have ten controls after leaving out one age indicator and one race
indicator to prevent over-saturating the model. Let KX = 10 represent the number of
additional controls.

The instrument for schooling is an indicator of whether the respondent was born in
the fourth quarter. We have the following reduced form relationships between schooling
and the instrument:

Si = ZiπS1 +GiπG1 + XiπX1 + πc,1 + ηi1 (2)

SiGk,i = ZiπSk +GiπGk + XiπXk + πc,k + ηik for k ∈ {2, ...,KG} (3)

Where Zi is a 1 × KZ vector of instruments, which includes any interactions between
the quarter-of-birth and any other variables. In our analyis, KZ = 19, which represents
interacting the quarter-of-birth with region, age, and race indicators. This is the same
approach taken in the original paper. Bound et al. (1995) delves into the issue of many
and weak instruments to conclude that it is not appropriate to assume the resulting two-
stage least squares estimate is normally distributed due to the issue of weak instruments.
Chamberlain and Imbens (1996) shows how we can overcome this issue by examining
the posterior distribution instead. This article is an extension of the posterior oriented
analysis that examines heterogeneous treatment effects.

3.1 Instrumental Variables Assumptions

We have the usual identifying assumptions:

Assumption 1. The instrument is relevant, excluded, and unconfounded:

Relevance: (π ′SπS)is is invertible (4)

Exclusion: (Zi ⊥⊥ Yi)|Si (5)

Unconfoundedness: Zi ⊥⊥ (εi,ηi) (6)
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Where πS
KZ×KG

is the matrix of coefficients that predict the treatments from the instru-

ments. Some sufficient conditions for (π ′SπS) to be invertible are that KZ > KG (we have
more instruments than treatments), and that πS,k are all linearly independent (πS is full
column rank). This second sufficient condition means that the set of instruments should
impact each treatment differently, otherwise we wouldn’t be able to identify the impact
two two different treatments from this set of instruments.

3.2 Augmented First-Stage Reduced Form

We have augmented the initial reduced form relationship (Equation 2) with expressions
for each interaction between quarter-of-birth and geographic region (Equation 3). This is
a departure from widely available "nonparametric heterogeneous instrumental variables"
implementations in the Python package EconML (2019). To see why, we only plug one
equation (Equation 2) into Equation 1:

Yi = (ZiπS1 +GiπG1 + XiπX1 + πc,1 + ηi1)βS1+

(ZiπS1 +GiπG1 + XiπX1 + πc,1 + ηi1)GiβSG+

GiβG + XiβX + βc + εi (7)

= Zi(πS1βS1 + πS1GiβSG)+ (8)

Gi(πG1βS1 + πG1GiβSG + βG)+

Xi(πX1βS1 + πX1GiβSG + βX)+

βc + πc,1(βS1) + πc,1GiβSG+

ηi1βS1 + ηi1Gi︸ ︷︷ ︸
interaction

(βSG) + εi (9)

Due to the interaction between the first stage reduced form errors and the geographic
region indicators in Equation 9, the two-stage least squares estimate will still be biased
unless we assume the source of heterogeneity, Gi, is a fixed, non-stochastic vector or if
we assume Gi is independent from the reduced form errors. This is like saying that any
omitted factors that determine the the years of schooling for each person are independent
from the place of birth!

An alternative is to instrument for the heterogeneous treatments also, which is why
we include first stage reduced form representations of all the interactions between the
amount of education with geography. To see this, let’s first compactify the notation by
representing the treatments by letting Si represent all the interacted treatment effects:
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Si
1×KG

≡ [Si SiGi]. Then we can stack the coefficients on the treatments βS and the first

stage coefficients on the instruments πS:

Si = ZiπS +GiπG + XiπX + πc + ηi (10)

Yi = SiβS +GiβG + XiβX + βc + εi (11)

= (ZiπS +GiπG + XiπX + πc + ηi)βS +GiβG + XiβX + βc + εi

= ZiπSβS +Gi(πGβS + βG) + Xi(πXβS + βX) + (πcβS + βc) + ηiβS︸ ︷︷ ︸
no interaction

+εi (12)

Equation 10 is the first stage, Equation 11 is the second stage, and Equation 12 is the
second stage reduced form. The standard two-stage least squares estimation proceeds by
predicting values for schooling, then regressing log earnings on these predicted schooling
levels. Note that the first stage estimation consists of estimating a reduced form specifi-
cation for each heterogenous treatment effect.

Another way to arrive at the same estimate is to regress both the outcomes and the treat-
ments on the instruments, then "divide" the two coefficients. In matrix notation "dividing"
the two coefficients involves inverting the matrix (π ′π). We haveβ = E((π ′π)−1π ′(πYonZ)).
Where πYonZ is the regression of Y on the right hand side from the first-stage. This is why
the relevance condition in Assumption 1 is about the invertibility of a matrix.

In the second stage reduced form (Equation 12), the first stage errors (ηi) do not in-
teract with the geographic indicators. This is the key reason why we choose to estimate
additional first stage parameters – we don’t need to assume Gi is non-stochastic, or that
Gi and ηi are independent. This also simplifies both the computational and analytical
calculation of the conditional posterior distributions because we don’t have to deal with
heterogeneous reduced form variance-covariance matrices.

By estimating more parameters in the first stage, we drastically raise the threshold of
"strength of the first stage" under which we would believe that our final two-stage least
squares estimate is distributed normally. Staiger and Stock (1994); Stock and Yogo (2002)
display how to check the F-statistic of the first stage for conditions when we can assume
the two-stage least squares estimate is asymptotically normal. Sanderson and Windmeijer
(2016) carries out the same large-sample-but-worsening-instruments analysis for the case
with multiple endogenous variables. As noted by many authors (Nelson and Startz, 1990;
Bekker, 1994; Phillips, 2009) the actual exact distribution of the two stage least squares
estimate is not normal. In the just-identified case the exact distribution of the two-stage
least squares estimate doesn’t even have finite moments, which would negate the use of
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bootstrap procedures to estimate the mean.
Instead, we work with the posterior distribution of the two-stage least squares esti-

mate and obtain estimates of confidence from the Bayesian posterior distribution. We fol-
low homogeneous treatment effect examples (Lopes and Polson, 2014; Wiesenfarth et al.,
2014) in choosing conjugate priors that are less informative about estimate. Conjugate
priors allow us to easily sample from the posterior distribution, save computational time,
and write out simple expressions for the conditional posterior distributions.

3.3 Error Structure

Assumption for the Errors/Omitted Variables:
We assume that the errors are normal, and specify priors for the covariances and the

coefficients.

Assumption 2. The errors are multivariate normal with mean zero and variance Σ:

( εi
1×1

, ηi
1×(KG)

) ∼ N(~0,Σ)

Assuming that the errors are normal is not as strong as assuming the final two-stage
least squares estimate is distributed normally. As an example, recall that the most basic
two-stage least squares estimate in the single treatment, single instrument case reduces
to the ratio of two estimated coefficients. If the errors in the first and second stage are
normal, then the two-stage least squares estimate is the ratio of two correlated normal
random variables. Fieller (1932) calculates the exact probability density function of the
ratio of two correlated normal random variables. In the just-identified case the two-stage
least squares estimate doesn’t have finite moments (Nelson and Startz, 1990).

3.4 Priors

Prior for the covariance:
We assume the variance Σ is distributed Inverse Wishart (the conjugate prior), with

relatively uninformative choices for its parameters:
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Prior 1. Our prior for Σ is Inverse Wishart:

Σ ∼ IW(n0 = 0.01,Σ0 = (0.01) ∗ I(KG+1))

Where I represents th identity matrix, and recall that KG is the number of geographic
regions. Choosing small values for n0 and Σ0 are uninformative because if we were to
observe N additional data: eN

N×(KG+1)
= (εi,ηi)i={1,...,N}, then the posterior distribution for

the variance would be (Σ|eN) ∼ IW(n0 +N,Σ0 +NΣ̂N), where Σ̂N is an estimate of the
covariance from the data. Therefore, the small initial values for the shape parameters
allow the data have a stronger impact on the posterior distribution of Σ.

We can also represent the variance-covariance matrix for the errors in reduced form:

Ω = BΣB ′

=

(
1 β ′S
~0 IKG

)
Σ

(
1 ~0 ′

βS IKG

)

=

(
1 β ′S
~0 IKG

)(
σεε Σεη

Σηε Σηη

)(
1 ~0 ′

βS IKG

)

=

(
σεε + 2ΣεηβS + β ′SΣηηβS Σεη + β

′
SΣηη

Σηε + ΣηηβS Σηη

)
(13)

=

(
ωη0η0 Ωη0η

Ωηη0 Ωηη

)
(14)

Where I have expanded the variance-covariance matrices of the errors into convenient
block form, and η0 is the error from the reduced form regression of Yi on the right hand
side from the first stage. We have a choice of forming our prior for the covariance matrix
in terms of Σ or Ω. Chao and Phillips (1998); Dreze (1976) discuss the 1-to-1 correspon-
dence between priors on Σ and priors on Ω. Our current prior puts an identity matrix as
the initial shape of the Inverse-Wishart distribution, which corresponds to an initial shape
of BB ′ on the prior of the reduced form errors.

Prior for the coefficients:
I use a normal prior for the coefficients:
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Prior 2. Our prior for the coefficients is Multivariate Normal:

(β,π) ∼ N(~0,Diag([λB, λP])−1) (15)

Where (β,π) are the set of coefficients in the structural model, and Diag(v) corre-
sponds to a matrix with the vector v on the diagonal and zero elsewhere. The main ad-
vantage of using a normal prior is because it is the conjugate prior to the specification that
the errors are normal.

The normal prior with a diagonal covariance matrix corresponds to using ridge regres-
sion with the regularization penalties scaled by λB and λP. Recall that ridge regression
minimizes the squared residuals plus a weighted sum of squares of the coefficients. If we
were to simply use ridge regression of Y on X with constant penalties λ, then the analyti-
cal solution is: βX,ridgereg = (X ′X+ Iλ)−1X ′Y, which is the standard analytical OLS solution
with the λ added to the "denominator"3. Taking the regularization penalties towards zero
is the same as increasing the variance of the normal priors to infinity, and this will lead
us to the standard OLS analytical solution. Throughout this article, I refer to a "weak"
prior as one that has variance set to 1 million, setting the ridge regression regularization
penalties to 1

(1 million)

Even without a Bayesian interpretation, some amount of regularization is still justified
as the dimension of the treatment increases. If we were to attempt to estimate nonpara-
metric returns to schooling, we would need to use regularization even if we did not want
to have a Bayesian interpretation of the results because nonparametric instrumental vari-
ables are plagued by an "ill-posed inverse" problem. The estimation becomes the issue of
regressing earnings on an infinite set of functions of our treatment (schooling). Unfortu-
nately, our instrument doesn’t impact all possible functions of the treatment. Newey and
Powell (2003) shows that a nonparametric instrumental variables strategy can be consis-
tent when one conducts ridge regression for the outcome on the predicted levels of school-
ing (the second stage), and reformulates ridge regression as a constrained maximization
problem, for which the constraint on the magnitude of the coefficients is assumed to not
bind.

4 Estimation

In order to obtain estimates of our confidence in the parameters, we sample from the
conditional posterior distributions of each parameter (this is Gibbs sampling). Since all

3This is why ridge regression is also called a shrinkage estimator.
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of our priors are conjugate distributions, the conditional posteriors take the same shape.
First we have the posterior distributions of the variance-covariance matrices:

4.1 Conditional Posterior for the Covariance Structure

(Σ|β,π,RH1N,RH2N, YN) ∼ IW(n0 +N,Σ0 +NΣ̂N), (16)

(Ω|Σ,β,π,RH1N,RH2N, YN) = BΣB ′ (17)

RH2N
N×(2KG+KX)

≡ [ SN
N×KG

, GN
N×(KG−1)

, XN
N×KX

, 1] (18)

RH1N
N×(KZ+KG+KX)

≡ [ ZN
N×KZ

, GN
N×(KG−1)

, XN
N×KX

, 1] (19)

Σ̂N = [ε̂N, η̂N] ′[ε̂N, η̂N] (20)

ε̂N = YN − (RH)2Nβ (21)

η̂N = YN − (RH)1Nπ (22)

Where YN is the column of log weekly earnings and RH1N and RH2N are stacked rows
of right hand side variables in the first and second stages respectively. We calculate Ω at
each step of the Gibbs sampling process because this will make subsequent draws from
the conditional posteriors of β and π much easier. As noted above, Σ̂N is the estimated
covariance matrix where [ε̂N, η̂N] is anN× 2 matrix of the two vectors of predicted errors
horizontally stacked together.

4.2 Conditional Posterior for the Coefficients

Since we have chosen conjugate priors, the posterior distribution for β is also normal:

(β|π,Σ,Ω,RH1N, R̂H2N, YN) ∼ N(b1,B1) (23)

R̂H2N ≡ [RH1Nπ,GN,XN, 1]

Now we need to specify what the parameters b1,B1 are. Note that the posterior for
β only conditions on predicted schooling because we want use the variation induced in
schooling by differences in the quarter-of-birth to identify β. This is the same reasoning
as in any instrumental variables estimation process.
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The posterior parameters for β are:

B−1
1,hom = Diag(λB) +

˜̂
RH
′

2N
˜̂
RH2N (24)

B−1
1,homb1,hom =

˜̂
RH
′

2NỸN (25)˜̂
RH2N = R̂H2Nω

−0.5
η0η0|η

(26)

ỸN = (YN − (SN − RH1Nπ)︸ ︷︷ ︸
η̂N

Ω−1
ηηΩηη0)ω

−0.5
η0η0|η

(27)

ωη0η0|η = (ωη0η0 −Ωη0ηΩ
−1
ηηΩηη0) (28)

The term (SN − RH1Nπ) our estimate of the reduced form errors.
Sampling for π looks quite similar to sampling from β, however we should should

break π into the coefficients for their individual first stage equations. Recall from Equa-
tions (2,3) that we have one first stage equation for each interaction between the schooling
and the geographic indicator because we want to avoid having our first stage reduced
form errors interacting with the source of heterogeneity. Then we have KG first stage
equations, one for each geographic region, and π is a matrix of coefficients with dimen-
sion (KZ+KG+KX)×KG. Let πk represent a single column of π, then π = [π1,π2, ...,πKG ].
Let π(−k) represent all the columns of π except for πk. We can sample from the conditional
posterior of πk conditioning on π(−k),β,Ω, Y,RH1N, ˆRH2N:

(πk|π(−k),β,Σ,Ω,RH1N, R̂H2N, YN) ∼ N(b1,B1) (29)

Since π
(KZ+KG+KX)×KG

is a matrix of parameters, it will be easier to sample from the

posterior distributions of each individual treatment. Let πk
(KZ+KG+KX)×1

represent the kth

column of π, and let π−k represent the other columns. For example, π1 represents the first
stage coefficients that predict the first element of Si from RH1.

Now it is easier to express the conditional posterior distribution of the one dimen-
sional vector πk.

(πk|π−k,β,Σ,Ω,RH1N, R̂H2N, YN) ∼ N(pk,Pk) (30)
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We can express the posterior distribution of π are

P−1
k = Diag(λPk) + R̃H

′
1kNR̃H1kN (31)

P−1
k pk = R̃H

′
1kNS̃kN (32)

R̃H1kN = RH1Nω
−0.5
ηkηk|η(−k)

(33)

S̃kN = (Sk − ([YN, S(−k)] − [R̂H2Nβ,RH1Nπ(−k)])︸ ︷︷ ︸
[η̂0,η̂−k]

Ω−1
η(−k)η(−k)

Ωη(−k)ηk)ω
−0.5
ηkηk|η(−k)

(34)

ωηkηk|η−k = ωηkηk −Ωηkη(−k)Ω
−1
η(−k)η(−k)

Ωη(−k)ηk (35)

Where S(−k) are the treatments, leaving out the kth treatment, andωηkηk refers to the
variance of the error in the kth first stage estimating equation. Since all the errors come
from the same set of simultaneous equations, it makes sense that the posteriors take the
exact same form. Once again, the term ([YN, S(−k)] − [R̂H2Nβ,RH1Nπ(−k)]) represents our
estimates of the error from the reduced form second stage, and the errors from the first
stages excluding the kth error.

The Gibbs sampling procedure using the Julia programming language. I drew 10, 000
samples from the Markov Chain Monte Carlo procedure, using the 2SLS estimates as
the initial values and using 2, 000 initial burn-in simulations to allow the draws to stabi-
lize. Although MCMC samples produces autocorrelated, we do not perform any thinning
(only taking every nth observation), as measures of percentiles, medians, means, and vari-
ances are more precise without thinning (MacEachern and Berliner, 1994; Link and Eaton,
2012).

When we use relatively uninformative priors, we should obtain the same point es-
timates as the standard 2SLS approach. However, there is a literature on allowing the
data to inform us about about the priors (Zellner et al., 2014; Zellner, 1978). Following
recent methods Hartford et al. (2017), we use a k-fold cross validation determine the opti-
mal variances in the normal prior (or the optimal regularization parameters.) K-fold cross
validation consists of splitting the data into a training and validation set, then training the
model on the training set and evaluates the mean squared error of the predicted outcomes
on the validation set. I use Julia to discover the regularization penalties that minimize the
out-of-sample mean-squared error. Recall that ridge regression regularization penalties
correspond to variances for a normal prior.
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5 Results

Table 3 summarizes the results of our exercise. We discuss each column from left to right.
The first two columns are point estimates and 95% confidence intervals obtained by using
standard techniques. All results are "significant". The OLS results indicate that there is
a positive empirical relationship between education and earnings, although this relation-
ship cannot be interpreted as causal. The positve point estimates for the IV estimates indi-
cates that there might be a positive causal relationship between education and earnings.
A standard interpretation of the 95% confidence interval as derived from the asymptotic
approximation of the distribution of the IV-2SLS estimate would lead us to believe that
the returns to education are "significantly" positive for all Census Regions.

The third column is the mean and 95% credible interval are gathered by Gibbs sam-
pling 10,000 times from the posterior of the instrumental variables estimate. We use a
"weak" prior that assumes the coefficients have variance 1 million (the ridge regression
penalty is 1/(1 million)). The point estimates are the mean of the Gibbs samples, while
the 95% credible intervals have endpoints determined by the 2.5 and 97.5 percentiles of
the samples. Note that the point estimates for the case with weak priors are quite similar
to the "standard" IV point estimates, but the 95% credible intervals are so much wider
that only one out of nine intervals doesn’t include zero. The wider intervals lead us to
conclude that it is inappropriate to assume that the "standard" 2SLS estimate is normally
distributed with the variance as derived from the delta method.

The final set of estimates is also has a mean and 95% credible interval obtained by
Gibbs sampling 10,000 times from the posterior of the instrumental variables estimate.
We use K-Fold cross validation to determine that a prior variance of 4.45 for the second
stage and upwards of 1 million for the first stage performed the best at out-of-sample
prediction (minimizing mean squared error using a two-stage approach).

The rightmost values display the percent of the posterior that lies above zero. This
is a measure of our confidence that the returns to education are positive. We conclude
that our identification strategy leads us to be 95% confident that the returns to educa-
tion are postive for the following four census regions: East North Central, East South
Central, South Atlantic, West South Central. Figure 4a shows a map of the regions and
corresponding proportion of the posterior that lies above zero, representing the posterior
chance that the returns to education are positive. Our identification strategy leads us to
be 95% confident that the returns to education are positive for the following four census
regions: East North Central, East South Central, South Atlantic, West South Central.
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6 Conclusion

This article estimates the heterogeneity in the returns to education. We follow Angrist and
Krueger (1991) in using the quarter-of-birth as an instrument for the level of schooling ob-
tained by men born between 1930 and 1940. The quarter-of-birth is a "weak instrument"
in the sense that we cannot assume the IV-2SLS estimate is distributed normal. This as-
sumption of normality is an appeal to the asymptotic distribution of the two-stage least
squares estimate, and calculations of the "standard errors" that are displayed in common
analytical programs like Stata report values calculated from applying the Delta-method.

Instead of using the asymptotic distribution, we sample from the posterior distribu-
tion of the two-stage least squares estimate. When using a weak prior, our point estimates
agree with the two-stage least squares instrumental variables estimates. However our
"95%" confidence intervals are much wider, leading us to reject positive returns to school-
ing for certain regions, while the standard approach would lead to strong, "significant"
results for all the regions. We also use cross-validation to determine the priors on the
coefficients (same as ridge-regression regularization penalties) that perform the best for
out-of-sample prediction using a two-stage least squares approach. The cross validation
tells us to use an weak prior for the first stage, but use a stronger prior in the second stage.
This empirical result agrees with the observation in Newey and Powell (2003) that some
regularization is needed in the second stage to solve the ill-posed inverse problem.

Our specific application is complicated by the necessity of estimating heterogeneous
treatment effects. In this article, we interact our proposed treatment (education level) with
geographic characteristics. We show that the currently accepted method of only have one
first stage equation - which instruments for education - can lead to biased results if the
source of heterogeneity is correlated with the omitted factors in the first stage specifica-
tion. In our case, instrumental variables estimate would still be biased if the region of
birth is correlated with any omitted factor that determined the level of schooling. Since
this assumption is too strong, instead we instrument for all the heterogeneous treatments,
leading us to have multiple first stage estimating equations. Instead of deriving the actual
posterior distribution, we iteratively sample from the conditional posterior distributions.

We have two main findings: for men born between 1930 and 1940 and who were
induced to attend an additional year of schooling due to the the interaction between com-
pulsory schooling laws and their quarter of birth, we are 95% sure that the returns to
education were positive for these four regions, and the returns to education were proba-
bly highest for this region 4.

4Please refer to Figure 2 for a visual display of the regions, or Table 2 for the exact definitions.
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Figure 1: Quarter of Birth Against Years of Education
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This figure shows the interquartile ranges of the years of education against quarter-of-birth. For
census participants born in the fourth quarter, we see that the first quartile of the level of
schooling is equal to the median. This suggests there is a binding lower bound to the number of
years of education for census participants born in the fourth quarter.
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Figure 2: Census Regions

This figure shows the census defined geographic regions. Table 2 lists out the states that make up
each region.
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Figure 3: Income Against Education by Census Region
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This figure shows the relationship between the average log weekly earnings against the average
years of education for each census region. We see a general positive trend, but more importantly,
we see that each region has differing average levels of weekly earnings and education. This
article checks if the returns to education differs across these geographic regions.
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Figure 4: The Heterogenous Returns to Education
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These two maps show summary measures of the posterior distribution of the causal returns to
education. We use K-Fold cross validation to determine that a prior variance of 4.5 for the second
stage and a large prior variance upwards of 1000 for the first stage performed the best at
out-of-sample prediction (using a two-stage approach) for log weekly earnings.

Figure 4a shows the proportion of the posterior that lies above zero, representing the posterior
chance that the returns to education are positive. Our identification strategy leads us to be 95%
confident that the returns to education are positive for the following four census regions: East
North Central, East South Central, South Atlantic, West South Central.

Figure 4b shows the mean of the posterior distribution. Note that a larger mean does not
correspond to more confidence in positive returns to education. Although West North Central
had the largest point estimate, we aren’t even 95% sure that the returns to education are positive
for West North Central.
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Table 1: Descriptive Statistics

Mean SD 10th Pct 90th Pct
Weekly Wages 427.4837 253.9709 179.4828 692.4039
Years of Education 12.68296 3.301034 8 17
Age 44.90577 2.948244 41 49
Married .8406331 .3660187 0 1
African America .0946618 .292748 0 0

N = 202,859 individuals in dataset.
Source: 1980 Census (5% Public Use Sample A). We filtered down to native born African Amer-
ican/Black or Caucasian/white males with birthdays in the first or fourth quarter of a year
between 1930 and 1939 (inclusive) with positive wage and salary earnings, and positive weeks
worked in 1979.
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Table 2: Geographic Regions
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Table 3: Results
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